Abstract

We explore the dependence of the Betti numbers of monomial ideals on the characteristic of the field. A first observation is that for a fixed prime p either the i-th Betti number of all high enough powers of a monomial ideal differs in characteristic 0 and in characteristic p or it is the same for all high enough powers. In our main results, we provide constructions and explicit examples of monomial ideals all of whose powers have some characteristic-dependent Betti numbers or whose asymptotic regularity depends on the field. We prove that, adding a monomial on new variables to a monomial ideal allows to spread the characteristic dependence to all powers. For any given prime p, this produces an edge ideal such that all its powers have some Betti numbers that are different over mathbb {Q} and over mathbb {Z}_p. Moreover, we show that, for every r ge 0 and i ge 3 there is a monomial ideal I such that some coefficient in a degree ge r of the Kodiyalam polynomials {mathfrak {P}}_3(I),ldots ,{mathfrak {P}}_{i+r}(I) depends on the characteristic. We also provide a summary of related results and speculate about the behavior of other combinatorially defined ideals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.