Abstract
Toward building tropical analogues of adic spaces, we study certain spaces of prime congruences as a topological semiring replacement for the space of continuous valuations on a topological ring. This requires building the theory of topological idempotent semirings, and we consider semirings of convergent power series as a primary example. We consider the semiring of convergent power series as a topological space by defining a metric on it. We check that, in tropical toric cases, the proposed objects carry meaningful geometric information. In particular, we show that the dimension behaves as expected. We give an explicit characterization of the points in terms of classical polyhedral geometry in a follow-up paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.