Abstract

A simple, lightweight, and easy to develop Single Jersey Wearable Tribo-Electric Nano Generators (SJ-WTENG) were constructed using Cotton and Acrylic fabrics (Triboelectric series materials). Fabrics were also coated with Maghemite (γ-Fe2O3) nanoparticles (13 nm) to increase the electrical conductance of the samples. Compression and Vertical contact-separation modes were adopted for studying the performance of the developed samples. Along with a Single WTENG sample, the outputs of two samples connected in series were also measured. To study the effect of developed Maghemite (γ-Fe2O3) nanoparticle coating, non-coated fabrics WTENGs were also constructed and tested. The maximum voltage reached with the Maghemite (γ-Fe2O3) nanoparticle-coated SJ-WTENG samples was a time-varying signal of 7.68 volts peak to peak volts with an approximate frequency of 50.5 Hertz. A shotky diode-based full bridge rectifier was used to get the DC voltage. The rectified DC signal was observed to be 5 volts which was enough to light up an LED with a threshold voltage of 1.7 volts DC as well as charge 3.7 volts, 3.6Ah Li-ion battery pack. Results confirmed that the application of Maghemite (γ-Fe2O3) nanoparticles was useful in augmenting the output of the proposed SJ-WTENG design. The proposed system can be used to power the battery powered IOT (Internet of Things) devices, widely used in medical and body sensor network applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call