Abstract

Most genome-wide association studies are based on case-control designs, which provide abundant resources for secondary phenotype analyses. However, such studies suffer from biased sampling of primary phenotypes, and the traditional statistical methods can lead to seriously distorted analysis results when they are applied to secondary phenotypes without accounting for the biased sampling mechanism. To our knowledge, there are no statistical methods specifically tailored for rare variant association analysis with secondary phenotypes. In this article, we proposed two novel joint test statistics for identifying secondary-phenotype-associated rare variants based on prospective likelihood and retrospective likelihood, respectively. We also exploit the assumption of gene-environment independence in retrospective likelihood to improve the statistical power and adopt a two-step strategy to balance statistical power and robustness. Simulations and a real-data application are conducted to demonstrate the superior performance of our proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.