Abstract
Internet of Things (IoT) devices are increasingly used in various applications in our daily lives. The network structure for IoT is heterogeneous and can create a complex architecture depending on the application and geographical structure. To efficiently process the information within this diverse and complex relationship, a robust data structure is needed for network operations. Graph neural network (GNN) technology is emerging as a capable tool for predicting complex data structures, such as graphs. Graphs can be employed to mimic the structure of IoT network and process information from IoT nodes using GNN techniques. In this paper, our goal is to explore the effectiveness of GNN in performing the node classification task for a given IoT network. We have generated three different IoT networks with varying network sizes, number of nodes, and feature sizes. We then test 12 different GNN algorithms to evaluate their performance in IoT node classification. Each method is examined in detail to observe its training behavior, testing behavior, and resilience against noise. In addition, time complexity and generalization ability of each model have also been studied. The experimental results show that some methods exhibit high resilience against noisy data for IoT node classification accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.