Abstract

Early finding of pathogens is significant to avoid foodborne diseases. Here, a novel lab-in-centrifugal-tube colorimetric biosensor was reported for Salmonella typhimurium detection using immune nickel nanowires (NNWs) to form capture nets for specific bacterial separation, gold@platinum nanozymes (GPNs) to mark target bacteria for effective signal amplification, and a smartphone App to analyze color change for quantitative bacterial determination. A 3D-printed cylindrical magnetic separator with air pressure self-regulating structure and NNW capture nets was elaboratively constructed and assembled inside the disposable centrifuge tube to simply perform the bacterial separation, label, wash, coloration and detection. Under optimal conditions, Salmonella typhimurium could be quantitatively detected in 2 h with a low detection limit of 21 CFU/mL. The recovery of target bacteria in spiked pork samples ranged from 87.0% to 97.6% with the averaged recovery of 93.9%. This biosensor was Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliverable to end-users (ASSURED), and had shown the potential for point-of-care testing of foodborne pathogens to ensure food safety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.