Abstract

Io's motion relative to the Jovian magnetic field generates a power of about 1012 W, which is thought to propagate as an Alfvén wave along the magnetic field line. This power is transmitted to the electrons, which will then precipitate and generate the observed auroral phenomena from UV to radio wavelengths. A more detailed look at this hypothesis shows some difficulties: Can the Alfvén waves escape the torus or are they trapped inside? Where and how are the particles accelerated? In which direction? Is there enough power transmitted to the particles to explain the strong brightness of the auroral emissions in UV, IR, visible, and radio? In other words, can we make a global, consistent model of the Io‐Jupiter interaction that matches all the observations? To answer these questions, we review the models and studies that have been proposed so far. We show that the Alfvén waves need to be filamented by a turbulent cascade process and accelerate the electrons at high latitude in order to explain the observations and to form a consistent scheme of the Io‐Jupiter interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.