Abstract

Io's interaction with the Jovian magnetosphere generates a power of about 1012 W which propagates as Alfvn waves along the magnetic field lines and is partly transferred to electrons, resulting in intense auroral emissions. A recent study of the power transmission along the Io flux tube and of the electron acceleration at high latitudes showed that the power of the observed emissions is well explained by assuming filamentation of the Alfvn waves in the torus and the acceleration of the electrons at high latitude. At Jupiter, UV footprints related to Europa and Ganymede have also been observed. At Saturn recent observations revealed a weak UV footprint of Enceladus. We apply the Io interaction model to the Europa and Enceladus interactions. We show that the Alfvn wave filamentation leads to a precipitating electron power consistent with the power of the observed UV footprints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.