Abstract

Dissolved gas analysis (DGA) in oil is an essential approach for transformer defect prediction. Most of the transformer defect prediction studies use artificial intelligence methods to build individual classifiers. Artificial intelligence techniques are highly sensitive to data. Transformer data is often an unbalanced data set, which leads to supervised learning models that focus more on a larger variety of samples, resulting in poorer model performance. To address this situation, this paper uses the synthetic minority oversampling technique (SMOTE) algorithm to oversample a few classes and mitigate the class imbalance problem of the sample set. Compared with a single classifier, a cluster of classifiers can better mine the information of the data set. In this paper, a feedforward neural network (FNN) is used as the base learner to construct a random forest (RF) model, and the variability among the base learners is increased by mapping the samples to a high-dimensional space through kernel principal component analysis (KPCA). Experimental results on faulty samples as well as noisy samples show that SMOTE can significantly enhance the precision of the classifier, but the problem of classification ambiguity occurs between some species. KPCA makes the characteristics of the dataset more obvious. The diagnostic effectiveness and interference resistance of the random forest model constructed in this paper are superior compared to other individual classifier algorithms mentioned in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.