Abstract

Abstract Considering the operating pattern of battery charging and swapping station (BCSS) providing two power supply modes referring to battery charging mode and battery swapping mode at the same time, the power supply mode planning of electric vehicle (EV) participating in logistics distribution is conducive to decrease the operation costs. The primary contribution of this paper is to construct an optimization model with the objective of minimizing the overall cost of transportation cost and slow charging cost by considering the optimal driving route of EV, the selection of power supply mode and the slow discharging or charging management in the depot. The transportation cost is consisted of fast charging cost, battery swapping cost, battery life loss cost and vehicle loss cost. The secondary contribution of this paper is to improve a novel optimization algorithm called natural aggregation algorithm (NAA) as integer version to solve effectively the proposed model. Taking 33-node logistics distribution system as an example to carry out numerical simulation, the impacts of power supply mode planning on transportation cost and slow dis/charging cost are analyzed, the impacts of slow dis/charging strategy on the total cost are analyzed, and the effectiveness of proposed model in 13-node, 64-node, 112-node logistics distribution system are comparatively analyzed. The simulation results have demonstrated the feasibility and effectiveness of the proposed model and approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call