Abstract

With the evolution of Smart Grid, Power Quality issues have become prominent. The urban development involves usage of computers, microprocessor controlled electronic loads and power electronic devices. These devices are the source of power quality disturbances. PQ problems are characterized by the variations in the magnitude and frequency in the system voltages and currents from their nominal values. To decide a control action, a proper classification mechanism is required to classify different PQ events. In this paper we propose a hybrid approach to perform this task. Different Neural topologies namely Cascade Forward Backprop Neural Network (CFBNN), Elman Backprop Neural Network (EBPNN), Feed Forward Backprop Neural Network (FFBPNN), Feed Forward Distributed Time Delay Neural Network (FFDTDNN) , Layer Recurrent Neural Network (LRNN), Nonlinear Autoregressive Exogenous Neural Network (NARX), Radial Basis Function Neural Network (RBFNN) along with the application of Hilbert Transform are employed to classify the PQ events. A meaningful comparison of these neural topologies is presented and it is found that Radial Basis Function Neural Network (RBFNN) is the most efficient topology to perform the classification task. Different levels of Additive White Gaussian Noise (AWGN) are added in the input features to present the comparison of classifiers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.