Abstract

Southern Africa has suffered from multiple power disruptions in the past decade due to inadequate electrical generation capacity, as well as load developments in locations that were not suitably planned for. Southern African countries are able to have reliable, sustainable, and efficient electrical power grids. The use of power interconnections for exchange power, especially for long-distance transmission networks, is important. Installing a suitable high-voltage alternating current (HVAC) with a high-voltage direct current (HVdc) will improve the active–reactive power compensation when transmitting electrical power over long distances (when transmitting bulk power is possible). Flexible alternating current transmission system (FACTS) devices are typically combinations of shunt and series converters. These approaches are capable of improving the power stability and voltage while allowing power to be transferred with minimal losses to an alternating current transmission system for the power exchange. In this article, two HVDC line-commutated converter (LCC) links, i.e., Angola–Namibia and Aggeneys–Kokerboom, were applied to minimize losses from 2657.43 to 2120.91 MW, with power setpoints of 1000 and 600 MW, respectively. The 2500 and 475 MVAr SVCs were used to control the voltage instabilities at Namibia and Mozambique substations, respectively. The use of HVdc to reduce losses and FACTS devices to enhance controllability and power transfer is extremely effective, particularly in long transmission lines transporting bulk power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call