Abstract
We investigatethe potential of space division multiplexing (SDM) for the power-over-fiber (PWoF) technique, in terms of weakly-coupled multicore fiber (WC-MCF) design and experimental verification. Our simulation results indicate that, the SDM-enabled PWoF scheme is superior to the wavelength division multiplexing (WDM) enabled counterpart, due to the scalability of the energy light delivery and the save of wavelength division multiplexers. Then, we experimentally demonstrate the co-transmission of optically carried fifth generation new radio (5G NR) signals at 1550-nm and the 60-W energy light at 1064-nm over the 1-km weakly-coupled seven-core fiber (WC-7CF) fronthaul link. Since the optical power delivery characteristic per the WC-MCF core is similar to that of the standard single-mode fiber (SSMF), the SDM-enabled PWoF scheme can evenly distribute the high-power energy light into multiple spatial channels, to maximize the efficiency of the optical power transition efficiency (OPTE). Consequently, the total collected optical power of the energy light over the 1-km WC-7CF is 4.6 times higher than that of the 1-km SSMF, mainly due to the insertion loss of the fan-in and fan-out (FIFO) devices. Meanwhile, the error-vector magnitude (EVM) of 1.5-Gbit/s 5G NR signal is 0.28%, when the received electrical signal power is −25 dBm. The EVM value of the co-transmitted 5G NR signal with the 60-W energy light only has a fluctuation of 0.01% over six hours. The SDM-enabled PWoF is useful for the optically powered 5G pico-cells, with the capability of high-speed access and centralized management.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have