Abstract
With the development of smart grid, residents have the opportunity to schedule their household appliances (HA) for the purpose of reducing electricity expenses and alleviating the pressure of the smart grid. In this paper, we introduce the structure of home energy management system (EMS) and then propose a power optimization strategy based on household load model and electric vehicle (EV) model for home power usage. In this strategy, the electric vehicles are charged when the price is low, and otherwise, are discharged. By adopting this combined system model under the time-of-use electricity price (TOUP), the proposed scheduling strategy would effectively minimize the electricity cost and reduce the pressure of the smart grid at the same time. Finally, simulation experiments are carried out to show the feasibility of the proposed strategy. The results show that crossover genetic particle swarm optimization algorithm has better convergence properties than traditional particle swarm algorithm and better adaptability than genetic algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.