Abstract

This paper presents a solution to the problem of reducing the power dissipated by a digital system containing an intellectual proprietary core processor which repeatedly executes a special-purpose program. The proposed method relies on a novel, application-dependent low-power address bus encoding scheme. The analysis of the execution traces of a given program allows an accurate computation of the correlations that may exist between blocks of bits in consecutive patterns; this information can be successfully exploited to determine an encoding which sensibly reduces the bus transition activity. Experimental results, obtained on a set of special-purpose applications, are very satisfactory; reductions of the bus activity up to 64.8% (41.8% on average) have been achieved over the original address streams. In addition, data concerning the quality and the performance of the automatically synthesized encoding/decoding circuits, as well as the results obtained for a realistic core-based design, indicate the practical usefulness of the proposed power optimization strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call