Abstract

Harvesting distributed and low-quality mechanical energies by triboelectric nanogenerators to power electrochemical reactions is beneficial to electric energy saving and certain applications. However, the conventional self-powered electrochemical process is awkward about the reaction rate, energy conversion efficiency, high-operation frequency, and mismatched impedance. Here we demonstrate an advanced self-powered electrochemical system. In comparison with the conventional system that is inert in activity, the superior power management and electrochemical reaction regulation in tandem make the novel system outstanding for hydrogen peroxide production. In addition to the visible product, an internal current efficiency of 24.6% in the system was achieved. The developed system provides an optimization strategy toward electric energy saving for electrochemical reactions as well as enabling their applications in remote areas by converting environmental mechanical vibrational energy for ecological improvement or recyclable chemical fuel generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.