Abstract

Environmental deterioration, especially water pollution, is widely dispersed and could affect the quality of people’s life at large. Though the sewage treatment plants are constructed to meet the demands of cities, distributed treatment units are still in request for the supplementary of centralized purification beyond the range of plants. Electrochemical degradation can reduce organic pollution to some degree, but it has to be powered. Triboelectric nanogenerator (TENG) is a newly-invented technology for low-frequency mechanical energy harvesting. Here, by integrating a rotary TENG (R-TENG) as electric power source with an electrochemical cell containing a modified graphite felt cathode for hydrogen peroxide (H2O2) along with hydroxyl radical (•OH) generation by Fenton reaction and a platinum sheet anode for active chlorine generation, a self-powered electrochemical system (SPECS) was constructed. Under the driven of mechanical energy or wind flow, such SPECS can efficiently degrade dyes after power management in neutral condition without any O2 aeration. This work not only provides a guideline for optimizing self-powered electrochemical reaction, but also displays a strategy based on the conversion from distributed mechanical energy to chemical energy for environmental remediation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.