Abstract

DC-DC buck converters have wide applications in portable electronic devices, battery chargers, and telecommunications. However, single-phase DC-DC buck converters have some drawbacks, especially in high current applications, where the increase in the size of the inductor will increase power losses, which significantly affects the overall efficiency of the converter. The multiphase configuration offers several advantages, such as reduction in output voltage ripple, input current ripple, conduction loss, and the physical size of the hardware. This paper presents an analysis of the power losses of the multiphase DC-DC buck converter with output power ranging between 50 watts to 250 watts. To verify the effectiveness of the multiphase converter, performance analysis was done using OrCAD PSpice software, where the number of phases was limited to five phases. This paper focused on power losses in the converter, namely conduction losses in diodes and MOSFETs, switching loss in MOSFETs, as well as losses in the inductor and capacitor. The relationship between the number of phases and factors of switching frequency, output, and the components’ internal resistance was also highlighted and discussed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.