Abstract
To address the environmental impact, low efficiency, and poor accuracy of existing power load prediction methods, this study innovatively proposes a power load prediction system that combines wavelet transform with digital twin technology. Compared with similar power load prediction methods, the proposed method achieved the highest power load prediction accuracy rate of 97.26%, with the lowest MAPE and RMSE being only 3.96% each. Our proposed method has good noise resistance and overcomes the disadvantage of traditional power load prediction methods that are easily affected by the environment. Moreover, the false detection rate of the load information data obtained from the power system in the Fuxin area from 2022 to 2023 was less than 5%, further verifying the reliability of the proposed method. This achievement is attributed to the powerful signal processing capabilities of the discrete wavelet transform, advanced pattern recognition and prediction capabilities of these three deep learning network algorithms, and the intelligence of digital twin technology. The combination of these three elements has brought new technological breakthroughs to the field of power load prediction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.