Abstract
We find exact power-law solutions for scalar-tensor theories and clarify the conditions under which they can account for an accelerated expansion of the Universe. These solutions have the property that the signs of both the Hubble rate and the deceleration parameter in the Jordan frame may be different from the signs of their Einstein-frame counterparts. For special parameter combinations we identify these solutions with asymptotic attractors that have been obtained in the literature through dynamical-system analysis. We establish an effective general-relativistic description for which the geometrical equivalent of dark energy is associated with a time dependent equation of state. The present value of the latter is consistent with the observed cosmological ``constant". We demonstrate that this type of power-law solutions for accelerated expansion cannot be realized in f(R) theories.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have