Abstract
We study the lateral deformations of randomly folded elastoplastic and predominantly plastic thin sheets under the uniaxial and radial compressions. We found that the lateral deformations of cylinders folded from elastoplastic sheets of paper obey a power law behavior with the universal Poisson’s index = 0.17 0.01, which does not depend neither the paper kind and sheet sizes thickness, edge length nor the folding confinement ratio. In contrast to this, the lateral deformations of randomly folded predominantly plastic aluminum foils display the linear dependence on the axial compression with the universal Poisson’s ratio e = 0.33 0.01. This difference is consistent with the difference in fractal topology of randomly folded elastoplastic and predominantly plastic sheets, which is found to belong to different universality classes. The general form of constitutive stress-deformation relations for randomly folded elastoplastic sheets is suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.