Abstract

As society continues advancing into the future, more energy is required to supply the increasing population and energy demands. Unfortunately, traditional forms of energy production through the burning of carbon-based fuels are dumping harmful pollutants into the environment, resulting in detrimental, and possibly irreversible, effects on our planet. The burning of coal and fossil fuels provides energy at the least monetary cost for countries like the US, but the price being paid through their negative impact of our atmosphere is difficult to quantify. A rapid shift to clean, alternative energy sources is critical in order to reduce the amount of greenhouse gas emissions. For alternative energy sources to replace traditional energy sources that produce greenhouse gases, they must be capable of providing energy at equal or greater rates and efficiencies, while still functioning at competitive prices. The main factors hindering the pursuit of alternative sources are their high initial costs and, for some, intermittency. The creation of electrical energy from natural sources like wind, water, and solar is very desirable since it produces no greenhouse gases and makes use of renewable sources—unlike fossil fuels. However, the planning and technology required to tap into these sources and transfer energy at the rate and consistency needed to supply our society comes at a higher price than traditional methods. These high costs are a result of the large-scale implementation of the state-of-the-art technologies behind the devices required for energy cultivation and delivery from these unorthodox sources. On the other hand, as fossil fuel sources become scarcer, the rising fuel costs drive overall costs up and make traditional methods less cost effective. The growing scarcity of fossil fuels and resulting pollutants stimulate the necessity to transition away from traditional energy production methods. Currently, the most common alternative energy technologies are solar photovoltaics (PVs), concentrated solar power (CSP), wind, hydroelectric, geothermal, tidal, wave, and nuclear. Because of government intervention in countries like the US and the absence of the need to restructure the electricity transmission system (due to the similarity in geographical requirements and consistency in power outputs for nuclear and traditional plants), nuclear energy is the most cost competitive energy technology that does not produce greenhouse gases. Through the proper use of nuclear fission electricity at high efficiencies could be produced without polluting our atmosphere. However, the initial capital required to erect nuclear plants dictates a higher cost over traditional methods. Therefore, the government is providing help with the high initial costs through loan guarantees, in order to stimulate the growth of low-emission energy production. This paper analyzes the proposal for the use of nuclear power as an intermediate step before an eventual transition to greater dependence on energy from wind, water, and solar (WWS) sources. Complete dependence on WWS cannot be achieved in the near future, within 20 years, because of the unavoidable variability of these sources and the required overhaul of the electricity transmission system. Therefore, we look to nuclear power in the time being to help provide predictable power as a means to reduce carbon emissions, while the other technologies are refined and gradually implemented in order to meet energy demand on a consistent basis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call