Abstract

We introduce the concept of modulation doping in three-dimensional nanostructured bulk materials to increase the thermoelectric figure of merit. Modulation-doped samples are made of two types of nanograins (a two-phase composite), where dopants are incorporated only into one type. By band engineering, charge carriers could be separated from their parent grains and moved into undoped grains, which would result in enhanced mobility of the carriers in comparison to uniform doping due to a reduction of ionized impurity scattering. The electrical conductivity of the two-phase composite can exceed that of the individual components, leading to a higher power factor. We here demonstrate the concept via experiment using composites made of doped silicon nanograins and intrinsic silicon germanium grains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.