Abstract

AbstractType‐I inorganic clathrates are promising high temperature thermoelectric materials. They are known for their intrinsic low thermal conductivity, but a moderate power factor leaves room for further improvement. In this paper, a new route for improving the power factor by enhanced carrier mobility achieved via modulation doping is reported. A series of clathrates with composition Ba8(AlxGa1−x)16Ge30 are synthesized through ball milling and spark plasma sintering of mixtures of Ba8Al16Ge30 and Ba8Ga16Ge30. Among the materials with x = 0.20, 0.23, and 0.25, it is found that the electrical conductivity is significantly enhanced with increasing x, while the Seebeck coefficient decreases slightly. It is further revealed that the carrier mobility of the sintered sample x = 0.25 is greatly increased, reaching a value that exceeds that for a single crystal. Electron microscopy analysis reveals that the material consists of a heterostructure and is composed of a Ga‐rich clathrate matrix phase and Al particles, suggesting that the power factor enhancement is due to modulation doping. As a result, the highest power factor is achieved for Ba8(Al0.25Ga0.75)16Ge30, with a value of 1.89 mW m−1 K−2 at 800 °C. Consequently, the maximum zT of sample x = 0.25 reaches 0.93 at 800 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.