Abstract

In this paper, we propose a power-efficient LDPC decoder architecture based on an accelerated message-passing schedule. The proposed decoder architecture is characterized as follows: (i) Partitioning a pipelined operation not to read and write intermediate messages simultaneously enables the accelerated message-passing schedule to be implemented with single-port SRAMs. (ii) FIFO-based buffering reduces the number of SRAM banks and words of the LDPC decoder based on the accelerated message-passing schedule. The proposed LDPC decoder keeps a single message for each non-zero bit in a parity check matrix as well as a classical schedule while achieving the accelerated message-passing schedule. Implementation results in 0.18 μm] CMOS technology show that the proposed decoder architecture reduces an area of the LDPC decoder by 43% and a power dissipation by 29% compared to the conventional architecture based on the accelerated message-passing schedule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.