Abstract

3-D integrated circuits promise high bandwidth, low latency, low device power, and a small form factor. Increased device density and asymmetrical packaging, however, renders the design of 3-D power delivery a challenge. We investigate in this paper various methods to improve 3-D power delivery. We analyze the impact of through-silicon via (TSV) size and spacing, of controlled collapse chip connection (C4) spacing, and of dedicated power delivery TSVs. In addition to considering typical cylindrical or square metal-filled TSVs (core TSVs), we also investigate using coaxial TSVs for power delivery resulting in reduced routing blockages and added coupling capacitance. Our 3-D evaluation system is composed of a quad-core chip multiprocessor, a memory die, and an accelerator engine, and it is evaluated using representative SPEC benchmark traces. This is the first detailed architectural-level analysis for 3-D power delivery. Our findings provide clear guidelines for 3-D power delivery design. More importantly, we show that it is possible to achieve 2-D-like, or even better, power quality by increasing C4 granularity and by selecting suitable TSV size and spacing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.