Abstract

This paper considers a stochastic optimization approach for job scheduling and server management in large-scale, geographically distributed data centers. Randomly arriving jobs are routed to a choice of servers. The number of active servers depends on server activation decisions that are updated at a slow time scale, and the service rates of the servers are controlled by power scaling decisions that are made at a faster time scale. We develop a two-time-scale decision strategy that offers provable power cost and delay guarantees. The performance and robustness of the approach is illustrated through simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.