Abstract

We consider the joint scheduling-and-power- allocation problem of a downlink cellular system. The system consists of two groups of users: real- time (RT) and non-real-time (NRT) users. Given some average power constraint on the base station, the problem is to find an algorithm that satisfies the RT and NRT quality-of-service (QoS) constraints. The RT QoS constraints guarantee the portion of RT packets that miss their deadline are no more than a pre-specified threshold. On the other hand, the NRT QoS is only to guarantee the stability of their queues. We propose a sum-rate- maximizing algorithm that satisfy all QoS and average power constraints. The proposed power allocation policy has a closed form expression for the two groups of users. However, the power policy of the RT users differ in structure from the NRT users. The proposed algorithm is optimal for the on-off channel model with a polynomial-time scheduling complexity. Using extensive simulations, the throughput of the proposed algorithm is shown to exceed existing approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.