Abstract

We consider a joint scheduling-and-power-allocation problem of a downlink cellular system. The system consists of two groups of users: real-time (RT) and non-real-time (NRT) users. Given an average power constraint on the base station, the problem is to find an algorithm that satisfies the RT hard deadline constraint and NRT queue stability constraint. We propose a sum-rate-maximizing algorithm that satisfies these constraints. We also show, through simulations, that the proposed algorithm has an average complexity that is close-to-linear in the number of RT users. The power allocation policy in the proposed algorithm has a closed-form expression for the two groups of users. However, interestingly, the power policy of the RT users differ in structure from that of the NRT users. We also show the superiority of the proposed algorithms over existing approaches using extensive simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.