Abstract

To realize power combination of two phase-locked relativistic backward wave oscillators (RBWOs), a compact power combiner is designed and investigated by 3-D particle-in-cell (PIC) simulation and experiment. The power combiner consists of two TM01-TE11 serpentine mode converters with a common output. When the two incident ports are fed with TM01 modes with a relative phase of 180° and power of 2.5 GW at each port, the conversion efficiency from the incident TM01 modes to the combined TE11 mode is 95.2% at 9.3 GHz, and the maximum electric field in the combiner is 714 kV/cm. The PIC simulation shows that the output power from the common port is 4.2 GW when the power combiner is connected to the two RBWOs with input signals, both producing 2.2 GW microwave, corresponding to a combination efficiency of 95.4%. In the high power microwave test, a method is proposed to obtain the combination efficiency without breaking the vacuum, which is 94.1% when the two phase-locked RBWOs output 1.8 GW and 2.2 GW. The power capacity of multi-gigawatts has been demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call