Abstract

Due to their low yield and easy aggregation during the electrode preparation process, exfoliated MoS2 monolayers cannot fulfill the requirements of alkali-metal-ion battery tests. Hence, we have developed a facile process to fabricate powder exfoliated MoS2 nanosheets capable of large-scale production and having highly monolayer-rich structures. This process contains two steps: liquid-phase exfoliation of the edge-rich MoS2 precursor and a freeze-drying procedure. The proposed MoS2 precursors contain rich edge fractions that are easily exfoliated by this method, and the freeze-drying procedure can maintain the unique monolayer-rich structure of MoS2 in the powder phase. The electrochemical evaluations of both lithium- and sodium-ion batteries reveal that the proposed powder exfoliated monolayer-rich MoS2 electrode exhibits remarkable specific capacities and stable cyclic performances. In particular, the monolayer-rich MoS2 nanosheet electrode delivers a superior lithium-storage capacity of ∼1400 mA h g-1. The exfoliated MoS2 nanosheet electrode can withstand over 1000 cycles even at 1 A g-1. The mechanism reveals that these unique MoS2 nanosheets not only have a large surface area but also their inclusive monolayer structures exhibit much higher charge mobility than those of bulk MoS2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.