Abstract

ABSTRACTThe aim was to evaluate the animal response and the chemical and physical changes of free-choice mineral mixtures fed to grazing cattle. Growing beef cattle were fed either powder (POW) or agglomerated (AGL) mineral mixtures in three different experiments (Exp.), carried out in pastures of Brachiaria grass. In Exp. 1 and 2, the mineral mixtures were disposed in unsheltered troughs (POWun vs. AGLun), being delivered once (D0, Exp.1) or twice (D0 and D8, Exp. 2), throughout 14-day periods. In Exp. 3, POWun and AGLun were additionally compared to POW in sheltered troughs (POWshe), and the mineral mixtures were disposed in D0, throughout 21-day periods. Non-consumed supplement was removed and sampled on D14 (Exp. 1 and 2) or D21 (Exp. 3). Evaluations included average daily body weight gain (ADG), daily disappearance of the supplement (DSD), penetration force of the supplement mass, faecal chemical composition and serum levels of Ca, P and Mg. In Exp. 1, no effects were observed on ADG and faecal mineral concentrations, however, changes in mineral concentrations and a 40% reduction in Na concentration in the supplement were observed, compared to the initial concentration. AGLun had a lower penetration force. In Exp. 2, there were no effects on DSD and faecal mineral concentrations. POWun showed a smaller reduction in Na content compared to AGLun, and AGLun showed lower penetration force. In Exp. 3, the treatments did not affect ADG, but there was a trend towards higher DSD and serum phosphorus (P) concentration for AGLun (p = 0.08). Higher faecal Na concentration was observed for AGLun and higher Na concentration occurred in non-consumed mixture of POWshe. Mineral supplements offered in uncovered troughs showed altered chemical and physical characteristics, with possible effects on supplement intake. However, the general changes are unlikely to alter animal performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.