Abstract

Proper maintenance of roads is an extremely complex task and also an important issue all over the world. One of the most critical road monitoring and maintenance activities is the detection of road anomalies such as potholes. Identification of potholes is necessary to avoid road accidents, prevent damage of vehicles, enhance travelling comforts, etc. Although maintenance of roads is considered to be a serious issue by the authorities over the years, lack of proper detection and mapping of road potholes makes the issue more severe. To overcome this problem, an end-to-end system called PotSpot is built for real-time detection, monitoring, and spatial mapping of potholes across the city A Convolutional Neural Network (CNN) model is proposed and evaluated on real-world dataset for pothole detection. Additionally, real-time pothole-marked maps are generated with the help of Google Maps API (Application Programming Interface). To provide an end-to-end service through this system, both the pothole detection and pothole mapping are integrated through an android application. The proposed model is also compared with six baselines namely Artificial Neural Network (ANN), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and three pre-trained CNN models InceptionV3, VGG19 and VGG16 in terms of performance metrics to verify its effectiveness. The proposed model achieves better accuracy (≈ 97.6 %) as compared to the above-mentioned baseline methods. It is also observed that the Area Under the Curve (AUC) value for the proposed pothole detection model (AUC= 0.97) is higher than the baseline methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.