Abstract

This study was designed to develop and evaluate machine learning algorithms for predicting seizure due to acute tramadol poisoning, identifying high-risk patients and facilitating appropriate clinical decision-making. Several characteristics of acute tramadol poisoning cases were collected in the Emergency Department (ED) (2013-2019). After selecting important variables in random forest method, prediction models were developed using the Support Vector Machine (SVM), Naïve Bayes (NB), Artificial Neural Network (ANN) and K-Nearest Neighbor (K-NN) algorithms. Area Under the Curve (AUC) and other diagnostic criteria were used to assess performance of models. In 909 patients, 544 (59.8%) experienced seizures. The important predictors of seizure were sex, pulse rate, arterial blood oxygen pressure, blood bicarbonate level and pH. SVM (AUC = 0.68), NB (AUC = 0.71) and ANN (AUC = 0.70) models outperformed k-NN model (AUC = 0.58). NB model had a higher sensitivity and negative predictive value and k-NN model had higher specificity and positive predictive values than other models. A perfect prediction model may help improve clinicians' decision-making and clinical care at EDs in hospitals and medical settings. SVM, ANN and NB models had no significant differences in the performance and accuracy; however, validated logistic regression (LR) was the superior model for predicting seizure due to acute tramadol poisoning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.