Abstract

Motor adaptation is critical to update motor tasks in new or modified environmental conditions. While the cerebellum supports error-based adaptations, its neural implementation is partially known. By controlling the frequency of cerebellar transcranial alternating current stimulation (c-tACS), we can test the influence of neural oscillation from the cerebellum for motor adaptation. Two independent experiments were conducted. In Experiment 1, 16 participants received four c-tACS protocols (45Hz, 50Hz, 55Hz, and sham) on four different days while they practiced a visuomotor adaptation task (30 degrees CCW) with variable intensity (within-subject design). In Experiment 2, 45 participants separated into three groups received the effect of 45Hz, 55Hz c-tACS, and sham, respectively (between-subject design), performing the same visuomotor task with a fixed intensity (0.9mA). In Experiment 1, 45Hz and 50Hz of c-tACS accelerated motor adaptation when participants performed the task only for the first time, independent of the time interval between sessions or the stimulation intensity. The effect of active c-tACS was ratified in Experiment 2, where 45Hz c-tACS benefits motor adaptation during the complete practice period. Reaction time, velocity, or duration of reaching are not affected by c-tACS. Cerebellar alternating current stimulation is an effective strategy to potentiate visuomotor adaptations. Frequency-dependent effects on the gamma band, especially for 45Hz c-tACS, ratify the oscillatory profile of cerebellar processes behind the motor adaptation. This can be exploited in future interventions to enhance motor learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.