Abstract

The emulation of synaptic functions such as potentiation and depression is of strategic importance for the development of artificial neuromorphic architectures. Memristors can qualitatively reproduce the short-term plasticity behaviour of biological synapses by exploiting the gradual relaxation of resistance levels upon the removal of the switching signals. Various types of memristors based on nanofabricated metal-oxide-semiconductor stacks have been proposed for this purpose. Here we present a different fabrication approach based on cluster-assembled nanostructured zirconia and gold films (ns-Au/ZrO x ) deposited in a bilayer planar configuration. This device shows memristive behaviour with short-term memory and potentiation/depression. The observed relaxation can be described by a stretched-exponential function. Furthermore, the characteristic time of the short-term phenomena dynamically changes under repeated pulses application. Our nanostructured device is characterised by a substantially larger conductive path length with respect to other nanoscale memristive devices; the use of a zirconia nanostructured film makes the device compatible with neuronal cell culture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.