Abstract

We investigate the potentials of digitally sampling scintillation pulses techniques for positron emission tomography (PET) in this paper, focusing on the determination of the event time. We have built, and continue building, a digital library of PET event waveforms generated with various combinations of photo-detectors and scintillator materials, with various crystal sizes. Events in this digital library are obtained at a high sampling of 20 GSps (Giga-samples per second) so that their waveforms are recorded with high accuracy. To explore the potential advantages of digitally sampling scintillation pulses, we employ a dataset in the above-mentioned library to evaluate two methods for digitizing the event pulses and linear interpolation techniques to analyze the resulting digital samples. Our results show that the two digitization methods that we studied can yield a coincidence timing resolution of about 300 ps FWHM when applied to events generated by a pair of LSO + PMT detector units. This timing resolution is comparable with that is achieved by the same detector pair with a constant fraction discriminator (CFD). As a benchmark, regular-time sampling (RTS) method, usually implemented with very fast traditional analog-to-digital converters (ADCs) for digitizing scintillation pulses, is not feasible for a multi-channel system like a PET system. Digitizing scintillation pulses with multi-voltage threshold (MVT) method could be implemented at a reasonable cost for a PET system. With digitized PET event samples, various digital signal processing (DSP) techniques can be implemented to determine event arrival time. Our results have therefore demonstrated the promising potentials of digitally sampling scintillation pulses techniques in PET imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.