Abstract

BackgroundFrom ancient times, marine algae have emerged as alternative medicine and foods, contains the rich source of natural products like proteins, vitamins, and secondary metabolites, especially Chlorella vulgaris (C. vulgaris) contains numerous anti-inflammatory, antioxidants and wound healing substances. Type 2 diabetes mellitus is closely associated with adipogenesis and their factors. Hence, we aimed to investigate the chemical constituents and adipogenic modulatory properties of C. vulgaris in 3T3-L1 pre-adipocytes.ResultsWe analysed chemical constituents in ethanolic extract of C. vulgaris (EECV) by LC–MS. Results revealed that the EECV contains few triterpenoids and saponin compounds. Further, the effect of EECV on lipid accumulation along with genes and proteins expressions which are associated with adipogenesis and lipogenesis were evaluated using oil red O staining, qPCR and western blot techniques. The data indicated that that EECV treatment increased differentiation and lipid accumulation in 3T3-L1 cells, which indicates positive regulation of adipogenic and lipogenic activity. These increases were associated with up-regulation of PPAR-γ2, C/EBP-α, adiponectin, FAS, and leptin mRNA and protein expressions. Also, EECV treatments increased the concentration of glycerol releases as compared with control cells. Troglitazone is a PPAR-γ agonist that stimulates the PPAR-γ2, adiponectin, and GLUT-4 expressions. Similarly, EECV treatments significantly upregulated PPAR-γ2, adiponectin, GLUT-4 expressions and glucose utilization. Further, EECV treatment decreased AMPK-α expression as compared with control and metformin treated cells.ConclusionThe present research findings confirmed that the EECV effectively modulates the lipid accumulation and differentiation in 3T3-L1 cells through AMPK-α mediated signalling pathway.

Highlights

  • From ancient times, marine algae have emerged as alternative medicine and foods, contains the rich source of natural products like proteins, vitamins, and secondary metabolites, especially Chlorella vulgaris (C. vulgaris) contains numerous anti-inflammatory, antioxidants and wound healing substances

  • ethanolic extract of C. vulgaris (EECV) up‐regulates key transcriptional adipogenic and lipogenic gene expression Further, we investigated the effect of EECV on the adipogenesis-related key transcriptional and other-factors using the qPCR technique

  • Type-2 diabetes mellitus is closely associated with adipocyte differentiation

Read more

Summary

Introduction

Marine algae have emerged as alternative medicine and foods, contains the rich source of natural products like proteins, vitamins, and secondary metabolites, especially Chlorella vulgaris (C. vulgaris) contains numerous anti-inflammatory, antioxidants and wound healing substances. Type 2 diabetes mellitus is closely associated with adipogenesis and their factors. In circumstances of positive energy balance, increased energy storage through the conversion of adipocyte from pre-adipocyte by the adipogenesis process [1, 2]. Numerous identified adipogenic factors are involved in the adipogenesis. The activation of these two factors can stimulate adiponectin, adipogenin, leptin, glucose transporter-4 (GLUT-4), fatty acid synthase (FAS), and adipocyte binding protein (aP2) and other gene expression which are associated with lipogenesis and adipogenesis [6]. AMP-activated protein kinase (AMPK) is a hetero-trimer complex, which acts as a sensor of cellular energy [7]. AMPactivated protein kinase is getting activated during the lipolysis process in adipocyte [8,9,10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call