Abstract

Alkaline phosphatase (ALP) is expressed in 3T3-L1 preadipocytes, and its activity increases during adipogenesis. The purpose of this study was to determine whether ALP activity could be used as a measure of intracellular lipid accumulation in human preadipocytes and 3T3-L1 cells and which of the factors that induce adipogenesis are responsible for stimulating ALP activity. Adipogenesis was initiated in 3T3-L1 cells by incubation with differentiation medium containing insulin, dexamethasone, and 3-isobutyl-1-methylxanthine. The effect of leaving out each of the differentiation medium components was studied. Adipogenesis was also assessed in human preadipocytes and 3T3-L1 cells in the presence of the ALP inhibitor histidine. ALP activity was measured using an automated colorimetric assay and intracellular lipid accumulation was measured using the lipid-specific dye oil red O. Removal of insulin or dexamethasone from the differentiation medium had little effect on either ALP activity or lipid accumulation in 3T3-L1 cells, while removal of IBMX blocked both. Histidine inhibited ALP activity and adipogenesis in human preadipocytes and 3T3-L1 cells. Pearson univariate correlation analysis demonstrated strong correlations between ALP activity and lipid accumulation in human preadipocytes ( r = 0.78, n = 69) and in 3T3-L1 cells ( r = 0.92, n = 27). These data suggest that ALP and fat storage are tightly linked during preadipocyte maturation and that the measurement of ALP activity may be a novel technique for the quantification of intracellular lipid accumulation that is more sensitive and rapid than currently used methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call