Abstract

The discovery of a new class of massive chromosomal rearrangement, baptized chromothripsis, in different cancers and congenital disorders has deeply modified our understanding on the genesis of complex genomic rearrangements. Several mechanisms, involving abortive apoptosis, telomere erosion, mitotic errors, micronuclei formation, and p53 inactivation, might cause chromothripsis. The remarkable point is that all these plausible mechanisms have been identified in the field of human reproduction as causal factors for reproductive failures and chromosomal abnormality genesis. Specific features of gametogenesis and early embryonic development may contribute to the emergence of chromothripsis. Multiple lines of evidence support the assumption that chromothripsis may arise more frequently than previously thought in both gametogenesis and early human embryogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.