Abstract
A novel DNA‐chip hybridization assay that uses the ras‐related GTP‐binding protein 1 gene (Ypt1) was developed for the identification of several devastating Phytophthora species. The hybridization was conducted in a portable microfluidic lab‐on‐a‐chip device for fast and accurate detection of 40 Phytophthora, two Pythium and one Phytopythium species. Moreover, the functionality of the Ypt1 region was examined in comparison to an array for the internal transcribed spacer (ITS) region by in silico modelling. The difference in species‐specific capture probe sequences was lower for the ITS than for the Ypt1 region. While ITS‐probes of Phytophthora ramorum, Phytophthora fragariae and Phytophthora lateralis cross‐reacted with up to 11 non‐target species, Ypt1‐probes were specific except for P. fragariae/Phytophthora rubi. First analyses of artificially inoculated Rhododendron leaves successfully demonstrated the usability of the respective capture probes for the Ypt1 and the ras‐related plant protein Rab1a gene region. The on‐chip hybridization enabled the detection of up to 1 pg μL−1 target DNA depending on the species examined. Due to the complementarity of ITS and Ypt1 genetic features, the use of multiple loci is recommended to identify targets of different taxonomic rank.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.