Abstract

Besides developments in the area of dry machining and minimum quantity lubrication, the use of coolant lubricants is still essential when machining high alloyed steels or heat resistant materials like titanium and nickel based alloys. Experts agree that this fact will not change in the next decade. For this reason it is necessary to use coolant lubricants as effectively as possible to maximise their positive effect on productivity and process stability. High-performance cooling strategies like high-pressure cooling and cooling with cold gases (cryogenic cooling) have received increased attention in the last years. Through the targeted supply of coolant lubricants to the cutting site it is possible to decrease tool wear, increase cutting speeds, guarantee defined chip breakage and chip transport and – in terms of cryogenic cooling – waive part cleaning. This paper shows current research results in the above mentioned field. Since the performance of a high-pressure coolant lubricant supply in turning difficult to cut materials has been shown in many previous papers, this paper focuses on the quantification of the potential in turning different steels, namely quenched and tempered but also stainless steel in comparison to the conventional flood cooling. Since energy efficiency is very crucial, pressure and flow rate have to be adjusted carefully and in accordance with the cutting parameters to guarantee best results with less energy. Moreover the effects of cryogenic cooling will be evaluated in comparison to high-pressure cooling and conventional flood cooling. In latter field, cutting tests were carried out under variation of the flow rate in order to find the minimum required value for a certain machining task with the overall aim to prevent waste of the media used. Especially in cryogenic cooling technologies, many fundamental research regarding the working mechanisms but also further developments in cutting tool and machine tool technology are still necessary to make this technology ready for industrial use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.