Abstract
Anthropogenic environmental pollution is a major development challenge in Ugandan rivers and lakes, the key drivers being industrialization, agriculture, and urbanization. The aim of the study was to assess the potential of heavy metal and microplastic contamination in River Mpanga, Fort Portal, Uganda. Triplicate water and sediment samples were collected from three sampling sites, preserved, and analyzed at the Chemistry Department, Makerere University for heavy metals, while microplastics analysis was conducted at NaFIRRI, Jinja. Sediment heavy metal contamination was assessed from the geoaccumulation index, while microplastic characterization and quantification were determined from stereomicroscopy and morphological features. Arsenic was the most prevalent metal with a mean concentration of 13.2 ppm thus higher than permissible maximum limits of WHO. The mean concentrations (ppm) of copper, lead, and cadmium were 0.01, 0.01, and 0.001 respectively, and below the permissible maximum. Sediment samples revealed very strong arsenic contamination, strong contamination for copper, moderate to strong contamination for lead, and a potential lack of contamination for cadmium. The higher concentrations of the heavy metals in the sediments compared to water could be attributed to bioaccumulation, as evidenced by the high geoaccumulation values. Microplastics occurred throughout the river and included fragments, filaments, film, pellets, form, and fibers. The presence of heavy metals and microplastics was attributed to anthropogenic activities within the river vicinity, which discharged heavy metal-laden waste into River Mpanga. High arsenic concentrations and sediment accumulation of contaminants pose serious potential public health threats to the local communities.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have