Abstract

In the literature the enzymatic kinetic resolution of a suspension of a solid substrate has largely been treated as a conventional kinetic resolution of a fully dissolved substrate. In this paper it is shown that this type of kinetic resolution is different in several important aspects. Quantitative models are developed for two types of such suspension processes. These models are used to compare the merits of these processes with the conventional kinetic resolution process where fully dissolved substrate is used. In the suspension processes the liquid phase concentration of substrate enantiomer that should be converted can be kept close to the maximum value, i.e., the solubility, when process conditions are properly chosen, whereas in a conventional process this concentration gradually decreases. Calculations show that this leads to a productivity that is about 6-fold higher in the suspension processes. Also, for enzymes with a low enantioselectivity, a severalfold increase in yield of remaining enantiopure substrate is predicted compared to the conventional kinetic resolution of dissolved enantiomers. Other potential advantages of using suspension reactions are that the initial substrate concentration may be higher (up to 25% (w/w)) and that the desired remaining substrate may be recovered by simply filtering off the solid crystals. Experimental evidence that these merits can be exploited is only partly given, using the few available examples from the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.