Abstract

Abstract In this manuscript, we give an overview of the main insights into our growth procedure for kesterite solar cells and show the possibilities that are provided by this approach. The importance of using Cu–Sn alloy instead of elemental Sn and Cu in the precursor is shown. We discuss how the alloy approach stabilises the composition and helps guide the process along a preferred reaction pathway. A summary of our previously reported findings in the context of our latest results on kesterite solar cells prepared from Cu–Sn alloyed precursors is drawn. The positive impact of an alloy precursor configuration on the formation pathway, process control, and process resilience is demonstrated. Furthermore, a new optimisation strategy for kesterite, based on the reported pathway, is discussed, including a smooth phase transition from Cu-rich to Cu-poor kesterite. Finally, we demonstrate results on buffer optimisation and the application of a promising hybrid buffer configuration of CdS/Zn(O,S), which can reduce the optical losses in the solar cell structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.