Abstract

While it is known that several Actinobacteria produce enzymes that decompose polysaccharides or phenolic compounds in dead plant biomass, the occurrence of these traits in the environment remains largely unclear. The aim of this work was to screen isolated actinobacterial strains to explore their ability to produce extracellular enzymes that participate in the degradation of polysaccharides and their ability to cometabolically transform phenolic compounds of various complexities. Actinobacterial strains were isolated from meadow and forest soils and screened for their ability to grow on lignocellulose. The potential to transform 14C-labelled phenolic substrates (dehydrogenation polymer (DHP), lignin and catechol) and to produce a range of extracellular, hydrolytic enzymes was investigated in three strains of Streptomyces spp. that possessed high lignocellulose degrading activity. Isolated strains showed high variation in their ability to produce cellulose- and hemicellulose-degrading enzymes and were able to mineralise up to 1.1% and to solubilise up to 4% of poplar lignin and to mineralise up to 11.4% and to solubilise up to 64% of catechol, while only minimal mineralisation of DHP was observed. The results confirm the potential importance of Actinobacteria in lignocellulose degradation, although it is likely that the decomposition of biopolymers is limited to strains that represent only a minor portion of the entire community, while the range of simple, carbon-containing compounds that serve as sources for actinobacterial growth is relatively wide.

Highlights

  • Lignocellulose represents the dominant portion of plant biomass and is a key pool of carbon in terrestrial ecosystems

  • Microorganisms represent the key decomposers of lignocellulose in soils and especially fungi are often regarded as major lignocellulose decomposers [1], most likely because their larger, multicellular and often filamentous bodies are better suited for the exploitation of bulky substrates [2]

  • Seventy-six strains of soil Actinobacteria were isolated from the soils of the study area and screened for their ability to produce enzymes involved in cellulose decomposition, including cellobiohydrolase and 1,4-b-glucosidase

Read more

Summary

Introduction

Lignocellulose represents the dominant portion of plant biomass and is a key pool of carbon in terrestrial ecosystems. Microorganisms represent the key decomposers of lignocellulose in soils and especially fungi are often regarded as major lignocellulose decomposers [1], most likely because their larger, multicellular and often filamentous bodies are better suited for the exploitation of bulky substrates [2]. This potential has led to the evolution of efficient enzymatic systems responsible for the decomposition of biopolymers in several fungi [1,3,4,5]. The hemicellulolytic system is composed of multiple glycosyl hydrolases that are specific for xylose-, mannose-, arabinose- and galactose-containing polysaccharides; and lignin degradation is mediated by oxidative enzymes, such as oxidases (laccases), peroxidases and auxiliary enzymes, that produce hydrogen peroxide [1,7,8]

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call