Abstract
Extensive efforts have been made to identify nucleoside reverse transcriptase inhibitors (NRTIs). Eight NRTIs have now been approved for clinical use; however, variants of HIV-1 resistant to these antiviral agents have emerged in patients even when they are treated with combinations [highly active antiretroviral therapy (HAART)]. Thus, the development of novel compounds that are active against drug-resistant HIV-1 variants and that prevent or delay the emergence of resistant HIV-1 variants is urgently needed. Previously, 4'-C-substituted nucleosides (4'-SNs) were designed as new types of NRTIs. They were synthesized and examined as potential therapeutic agents against HIV infection. Among them, several 4'-substituted-2'-deoxynucleosides (4'-SdNs), especially those that bear an ethynyl group, were shown to be active against various laboratory and clinical HIV-1 strains including known drug-resistant variants. These results were recently reported by our collaborators. In this review, we summarize the design, synthesis and demonstrations of the anti-HIV activity of 4'-SNs, and then consider 4'-SNs as potential therapeutic agents for HIV-1.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have