Abstract

Aim of the study: To investigate the potential of 10% propolis-based toothpaste on inhibiting biofilm-forming bacteria growth in vitro. Material and method: Organoleptic properties are evaluated, considering color, odor, and taste. Antibacterial tests use a disc diffusion method against Streptococcus mutans, Staphylococcus aureus and Porphyromonas gingivalis bacteria, while cytotoxicity is assessed using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay on fibroblast cells. Statistical analysis involves mean ± standard deviation. The data were then tested using a one-way analysis of variance and Kruskal-Wallis, followed by post-hoc test (p < 0.05). Results: The organoleptic evaluation of 10% propolis toothpaste reveals a visually clear appearance, consistent orange flavor, and aroma lasting 30 days. Based on the antibacterial results, a 10% level of propolis toothpaste sample inhibited the growth of Streptococcus mutans, Staphylococcus aureus and Porphyromonas gingivalis bacteria. The post-hoc test showed that toothpaste demonstrated significant inhibition on S. mutans and S. aureus compared to the negative control (p < 0.05). The toothpaste showed a larger inhibitory zone towards P. gingivalis compared to the adverse control; however, no significant differences were observed (p > 0.05). Cytotoxicity assessment on fibroblast cells shows a high percentage (85.31%) of viable cells. The findings highlight the 10% of propolis toothpaste’s potential and non-toxic as oral care product. Conclusions: 10% propolis toothpaste inhibits S. mutans, S. aureus, P. gingivalis growth, and not toxic on fibroblast.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call