Abstract

Background This study is aimed at investigating natriuretic peptide B (NPPB) coexpression genes and their pathways involved in heart failure (HF) among patients both with and without type 2 diabetes mellitus (T2DM). Methods The microarray dataset GSE26887, containing 19 postischemic HF patients' peripheral blood samples (7 with T2DM and 12 without T2DM), was examined to detect the genes coexpressed with NPPB using the corr.test function in the R packet. Furthermore, using online analytical tools, we determined the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, Gene Ontology (GO) annotation, and protein-protein interaction (PPI) network of the coexpression genes. The modules and hub genes of the PPI network were then identified using the Cytoscape software. Results In patients with T2DM, a total of 41 biological processes (BP), 20 cellular components (CC), 13 molecular functions (MF), and 41 pathways were identified. Furthermore, a total of 61 BPs, 16 CCs, 13 MFs, and 22 pathways in patients without T2DM were identified. In both groups of patients, 17 BPs, 10 CCs, 6 MFs, and 13 pathways were enriched. We also identified 173 intersectional coexpression genes (63 positively, 106 negatively, and 4 differently coexpressed in patients with and without T2DM, respectively) in both types of patients, which were enriched in 16 BPs, 8 CCs, 3 MFs, and 8 KEGG pathways. Moreover, the PPI network (containing 237 edges and 170 nodes) with the top module significantly enriched in 4 BPs (tricarboxylic acid metabolic process, citrate metabolic process, tricarboxylic acid cycle, and aerobic respiration) and 3 pathways (citrate cycle, malaria parasite metabolic pathway, and AGE-RAGE signaling pathway in diabetic complications) was constructed. DECR1, BGN, TIMP1, VCAN, and CTCF are the top hub genes. Conclusions Our findings may elucidate the functions and roles of the NPPB gene in patients with postischemic HF and facilitate HF management.

Highlights

  • Heart failure (HF) is a challenge for numerous cardiovascular specialists, as it affects both the health and quality of life of a tremendous number of patients

  • Of these intersectional coexpression genes, we found 3 genes (CENPBD1P1, KHDRBS3, and PHOX2B) that were positively coexpressed with natriuretic peptide B (NPPB) in patients with type 2 diabetes mellitus (T2DM), but negatively coexpressed in patients without T2DM, and 1 gene (NQO1) that was negatively coexpressed with NPPB in patients with T2DM, but positively coexpressed in patients without T2DM

  • Due to the excessive number of enrichment analyses, the top seven biological processes (BP), cellular components (CC), and molecular functions (MF) were selected for visualization with P < 0:05 (Figures 3(a) and 3(b))

Read more

Summary

Introduction

Heart failure (HF) is a challenge for numerous cardiovascular specialists, as it affects both the health and quality of life of a tremendous number of patients. This study is aimed at investigating natriuretic peptide B (NPPB) coexpression genes and their pathways involved in heart failure (HF) among patients both with and without type 2 diabetes mellitus (T2DM). In patients with T2DM, a total of 41 biological processes (BP), 20 cellular components (CC), 13 molecular functions (MF), and 41 pathways were identified. A total of 61 BPs, 16 CCs, 13 MFs, and 22 pathways in patients without T2DM were identified. In both groups of patients, 17 BPs, 10 CCs, 6 MFs, and 13 pathways were enriched. We identified 173 intersectional coexpression genes (63 positively, 106 negatively, and 4 differently coexpressed in patients with and without T2DM, respectively) in both types of patients, which were enriched in 16 BPs, 8 CCs, 3 MFs, and 8 KEGG pathways. Our findings may elucidate the functions and roles of the NPPB gene in patients with postischemic HF and facilitate HF management

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call