Abstract

AbstractMicrostructured materials are becoming important for high performance electrochemical device especially for energy storage due to their advantageous diffusion and flux properties. Utilizing a rationally designed hollow structured polypyrrole microparticles (PPyMPs) with controllable wall thicknesses of ∼110 to 340 nm, we observed a significant morphological effect on electrocapacitive kinetics of the PPyMPs modulated by the voltammetric potential window and scan rate. The thin‐hollow architecture of PPyMPs revealed significant enhancement of charge storage performance (up to 447 %), high retention at high scan rate and faster charge/discharge kinetics compared to the thick‐hollow PPyMPs due to the larger accessible surface area and decrease of diffusion length. These findings demonstrated the electrocapacitive kinetics performance of microstructured soft materials related to morphological effect modulated by operational conditions. Our study provides new insight on electrochemistry of soft electrode materials with controlled nanostructured morphology for understanding the mechanism of charge insertion and mass diffusion for the future development of high performance porous electrode material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.